Proton irradiation effects on optical properties of undoped $Gd_3Al_xGa_{5-x}O_{12}$ (x = 0,1,2,3) single crystals

Dmitry Spassky^{1,2,3*}, Andrey Spassky¹, Victor Lebedev¹, F. Fedyunin⁴, N. Kozlova³, E. Zabelina³, V. Kasimova³, O. Buzanov⁵

Presented at Virtual Session of RAP2023

The crystals of Ce-doped garnets Gd₃Al_xGa_{5-x}O₁₂ (GAGG) attract attention as multipurpose scintillating material due to the combination of high density, chemical stability, high light yield and reasonable energy resolution [P. Lecoq, Nucl. Instr. and Meth. in Phys. Res. A. 809 (2016) 130; M. Korzhik et al., Cryst. Res. Technol. 54 (2019) 1800172.]. Radiation resistance, which is an essential property for scintillators, has been previously studied for the crystals doped with Ce³⁺ ions [V. Alenkov et al., Nucl. Instr. and Meth. in Phys. Res. A. 916 (2019) 226; V.M. Kasimova et al., Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques. 15 (2021) 1259.]. However, the presence of Ce³⁺ - related absorption bands in UV and visible spectral regions hinders observation of induced absorption bands. The studies of undoped crystals allows to avoid this problem and to obtain more reliable data on the parameters of the bands of induced absorption. Here we present the study of the proton radiation effects on the optical transmission of the

Experimental techniques

Absorption spectra were measured using PerkinElmer Lambda 950 spectrophotometer with spectral resolution 0.2 nm. Reflection spectra were measured using Cary-5000 spectrophotometer with universal measurement accessory.

* Corresponding author e-mail: spas@srd.sinp.msu.ru

undoped $Gd_3Al_xGa_{5-x}O_{12}$ (x = 0,1,2,3) garnet crystals.

proton beam fluence $1.4 \cdot 10^{14}$ protons/cm². The obtained dose was estimated as ~3 MGy each time.

Irradiation by protons with energy 6.7 MeV was

performed using 120 cm cyclotron. The crystals

were irradiated by protons for two times with a

Absorption of non-irradiated crystals

Absorption spectra of $Gd_3Al_xGa_{5-x}O_{12}$, T = 300 K. The enlarged region near bandgap edge is presented in the inset.

* Absorption spectra were corrected using Fresnel formulas on reflection losses considering multiple reflections between surfaces. * Sets of narrow lines at 3.95-4.11 eV, 4.40-4.55 eV and 4.85-5.05 eV arise due to ${}^{8}S_{7/2} \rightarrow {}^{6}P_{J}$, ${}^{6}I_{J}$ and ${}^{6}D_{J}$ transitions within Gd³⁺ ions. ***** The sharp rise of absorption coefficient at E > 5.2 eV is related to the fundamental absorption edge. The edge shifts to the highenergy region with x value (i.e. with aluminum content increase). * The optical band gap (E_{g}^{opt}) values were derived from the Tauc plot approximation. E_{g}^{opt} were determined as 5.38, 5.63, 5.88 and 6.01 eV for $Gd_3Al_xGa_{5-x}O_{12}$ crystals with x = 0,1,2,3, respectively. * A broad structureless absorption band below E_g^{opt} is observed for all crystals. This absorption is related to structural defects. Section Sec formation of oxygen and gallium vacancies as well as related defects (antisite Gd³⁺_{Ga3+} defects as well as different types of F centers) in Gd₃Ga₅O₁₂ crystal. The intensity of the band decreases with x value due to the decrease of gallium content and

related defects in the crystal.

Garnet crystal structure

- GAGG has cubic structure with a space group
 of *Ia3d*;
- The general chemical formula A₃B₂^{oct}C₃^{tet}O₁₂ contains three types of oxygen polyhedrons;
- Gd³⁺ occupies dodecahedral sites while Al³⁺ and Ga³⁺ are distributed between octahedral and tetrahedral sites.

V		Al/Ga
	Ge	
		Al/Ga

GaO ₆		A — site dodecahedral	B - site octahedral	C - site tetrahedral
	Gd ₃ (Al,Ga) ₅ O ₁₂	Gd ³⁺ (0.105 nm)	Ga ³⁺ (0.062 nm)	Ga ³⁺ (0.047 nm)
			Al ³⁺ (0.054 nm)	Al ³⁺ (0.039 nm)

Single crystals of $Gd_3Al_xGa_{5-x}O_{12}$ (x = 0,1,2,3) were grown by the Czochralski method at Fomos-Materials (Moscow, Russia, https://newpiezo.com/).

Absorption spectra of irradiated Gd₃Al_xGa_{5-x}O₁₂

2. Induced absorption of Gd₃Al_xGa_{5-x}O₁₂ after two cycles of proton irradiation

The increase of irradiation dose results in the increase of garnets absorption in the transparency region from 1.7 eV and up to the fundamental absorption edge.

Absorption spectra of irradiated Gd₃Al_xGa_{5-x}O₁₂

1. Influence of the single irradiation cycle on absorption of Gd_3Al_xGa_{5-x}O_{12}

Absorption spectra of $Gd_3Ga_5O_{12}$ crystal before and after proton irradiation.

- Influence of the proton irradiation on the optical absorption is presented for the sample with x = 0. The most pronounced changes has been detected for this sample.
- ✤ The irradiation resulted in the appearance of two bands of induced absorption bands in the region 1.5 – 4.3 eV and suppression of two absorption bands in the region 4.3 – 5.3 eV.
- Redistribution between the absorption bands in irradiated crystal is related to the recharge of the defects, already existing in the crystal.
- We suppose that irradiation results in the excitation of electrons from the valence band, which could be further captured by F centers (one electron at oxygen vacancy) thus forming F⁻ centers.

Absorption spectra of $Gd_3Ga_5O_{12}$ crystal before and after proton irradiation.

Spectra of induced absorption for Gd₃Al_xGa_{5-x}O₁₂ crystals.

- The decomposition of induced absorption spectra on Gauss components demonstrates that appearance of additional absorption band peaking around 5 eV is responsible for the increase of absorption in the high energy part of transparency region. The band is attributed to the defects connected with the displacement of ions from lattice sites.
- The induced absorption is most pronounced for the Gd₃Ga₅O₁₂ crystal (x = 0) while it decreases with the increase of Al content in the crystal.
- Gd₃Ga₅O₁₂ is characterized by the highest concentration of structural defects before radiation. For other crystals the effect is less pronounced and demonstrates the tendency to decrease with the increase of Al content.
- Therefore, we conclude that the radiation damage of Gd₃Al_xGa_{5-x}O₁₂ crystals is mainly connected with the defects arising due to gallium oxide evaporation from the melt. Partial substitution of Ga with Al ions doesn't result in appearance of additional bands of induced absorption.

Spectra of induced absorption for $Gd_3Al_xGa_{5-x}O_{12}$ crystals.

Decomposition of induced absorption spectrum of $Gd_3Ga_5O_{12}$ into Gauss components.

Decomposition of induced absorption spectrum of $Gd_3Al_xGa_{5-x}O_{12}$ (x = 0,3) into Gauss components.

Acknowledgements

The studies were carried out with financial support within State Assignment FSME-2023-0003. The work was supported in part by the Ministry of Science and Higher Education of the Russian Federation, Grant No. 075-15-2021-1353.

Affiliation of the authors

¹Skobeltsyn Institute of Nuclear Physics, M.V. Lomonosov Moscow State University, Russia ²Institute of Physics, University of Tartu, Estonia ³National University of Science and Technology (MISiS), Moscow, Russia ⁴Physical Department, M.V. Lomonosov Moscow State University, Russia 5Fomos-Materials, Moscow, Russia

Conclusions

Proton irradiation results in the appearance of induced absorption bands peaking at ~3.2, 4.1 and 5.0 eV.
 Appearance of two former bands is accompanied by the crystal's bleaching and are ascribed to the recharge of F centers. The latter band is ascribed to the displacement defect.

- The intensity of induced absorption is proportional to the Ga content in the crystal. The defects formation in Gd₃Al_xGa_{5-x}O₁₂ is connected with evaporation of gallium oxide from the melt.
- Partial substitution of Ga with Al improves radiation hardness of Gd₃Al_xGa_{5-x}O₁₂.